Nuprl Definition : cosine-approx

cosine-approx(x;k;N) ==  poly-approx(λi.(r(if (i rem =z 0) then else -1 fi ))/(2 i)!;x^2;k;N)



Definitions occuring in Statement :  poly-approx: poly-approx(a;x;k;N) rnexp: x^k1 int-rdiv: (a)/k1 int-to-real: r(n) fact: (n)! ifthenelse: if then else fi  eq_int: (i =z j) lambda: λx.A[x] remainder: rem m multiply: m minus: -n natural_number: $n
Definitions occuring in definition :  poly-approx: poly-approx(a;x;k;N) lambda: λx.A[x] int-rdiv: (a)/k1 int-to-real: r(n) ifthenelse: if then else fi  eq_int: (i =z j) remainder: rem m minus: -n fact: (n)! multiply: m rnexp: x^k1 natural_number: $n
FDL editor aliases :  cosine-approx

Latex:
cosine-approx(x;k;N)  ==    poly-approx(\mlambda{}i.(r(if  (i  rem  2  =\msubz{}  0)  then  1  else  -1  fi  ))/(2  *  i)!;x\^{}2;k;N)



Date html generated: 2019_10_29-AM-10_36_00
Last ObjectModification: 2019_02_02-AM-11_29_45

Theory : reals


Home Index