Nuprl Lemma : countable-Heine-Borel-proper

a:ℝ. ∀b:{b:ℝa < b} .
  ∀[C:ℕ ⟶ {x:ℝx ∈ [a, b]}  ⟶ ℙ]
    ((∀n:ℕ. ∀x:{x:ℝx ∈ [a, b]} . ∀y:{y:{x:ℝx ∈ [a, b]} y} .  (C[n;x]  C[n;y]))
     (∀x:{x:ℝx ∈ [a, b]} . ∃n:ℕC[n;x])
     (∃k:ℕ. ∀x:{x:ℝx ∈ [a, b]} . ∃n:ℕk. C[n;x]))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rless: x < y req: y real: int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T uimplies: supposing a sq_stable: SqStable(P) guard: {T} squash: T subtype_rel: A ⊆B exists: x:A. B[x] nat: so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: i-member: r ∈ I rccint: [l, u] pi1: fst(t) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff less_than': less_than'(a;b) powerset: powerset(T) iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] equipollent: B cand: c∧ B subtract: m true: True sq_type: SQType(T) compose: g biject: Bij(A;B;f) surject: Surj(A;B;f)

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  <  b\}  .
    \mforall{}[C:\mBbbN{}  {}\mrightarrow{}  \{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}n:\mBbbN{}.  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  \mforall{}y:\{y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  |  x  =  y\}  .    (C[n;x]  {}\mRightarrow{}  C[n;y]))
        {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  \mexists{}n:\mBbbN{}.  C[n;x])
        {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  \mexists{}n:\mBbbN{}k.  C[n;x]))



Date html generated: 2020_05_20-PM-00_10_45
Last ObjectModification: 2020_01_06-PM-00_14_48

Theory : reals


Home Index