Nuprl Lemma : fixedpoint-property-iff

X:Type. ∀d:metric(X).  (mcompact(X;d)  (FP(X) ⇐⇒ ∀f:FUN(X ⟶ X). (∀x:X. x))))


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) fixedpoint-property: FP(X) mfun: FUN(X ⟶ Y) msep: y metric: metric(X) all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q apply: a universe: Type
Definitions unfolded in proof :  rev_implies:  Q prop: mfun: FUN(X ⟶ Y) uall: [x:A]. B[x] member: t ∈ T false: False not: ¬A and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] fixedpoint-property: FP(X) msep: y pi1: fst(t) guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] nat_plus: + uimplies: supposing a subtype_rel: A ⊆B exists: x:A. B[x] mcompact: mcompact(X;d) satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: rgt: x > y rge: x ≥ y sq_exists: x:A [B[x]] rless: x < y le: A ≤ B true: True squash: T rneq: x ≠ y is-mfun: f:FUN(X;Y) sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) stable: Stable{P}

Latex:
\mforall{}X:Type.  \mforall{}d:metric(X).    (mcompact(X;d)  {}\mRightarrow{}  (FP(X)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}f:FUN(X  {}\mrightarrow{}  X).  (\mneg{}(\mforall{}x:X.  f  x  \#  x))))



Date html generated: 2020_05_20-PM-00_02_12
Last ObjectModification: 2020_03_19-PM-05_47_58

Theory : reals


Home Index