Nuprl Definition : fun-cauchy

λn.f[n; x] is cauchy for x ∈ ==
  ∀a:{a:ℕ+icompact(i-approx(I;a))} . ∀k:ℕ+.
    ∃N:ℕ+. ∀x:{x:ℝx ∈ i-approx(I;a)} . ∀n,m:{N...}.  (|f[n; x] f[m; x]| ≤ (r1/r(k)))



Definitions occuring in Statement :  icompact: icompact(I) i-approx: i-approx(I;n) i-member: r ∈ I rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) real: int_upper: {i...} nat_plus: + all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions occuring in definition :  icompact: icompact(I) exists: x:A. B[x] nat_plus: + set: {x:A| B[x]}  real: i-member: r ∈ I i-approx: i-approx(I;n) all: x:A. B[x] int_upper: {i...} rleq: x ≤ y rabs: |x| rsub: y rdiv: (x/y) natural_number: $n int-to-real: r(n)
FDL editor aliases :  fun-cauchy

Latex:
\mlambda{}n.f[n;  x]  is  cauchy  for  x  \mmember{}  I  ==
    \mforall{}a:\{a:\mBbbN{}\msupplus{}|  icompact(i-approx(I;a))\}  .  \mforall{}k:\mBbbN{}\msupplus{}.
        \mexists{}N:\mBbbN{}\msupplus{}.  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  i-approx(I;a)\}  .  \mforall{}n,m:\{N...\}.    (|f[n;  x]  -  f[m;  x]|  \mleq{}  (r1/r(k)))



Date html generated: 2016_05_18-AM-09_52_59
Last ObjectModification: 2015_09_23-AM-09_14_01

Theory : reals


Home Index