Nuprl Lemma : fun-converges-to-rsub

I:Interval. ∀f1,f2:ℕ ⟶ I ⟶ℝ. ∀g1,g2:I ⟶ℝ.
  (lim n→∞.f1[n;x] = λy.g1[y] for x ∈ I
   lim n→∞.f2[n;x] = λy.g2[y] for x ∈ I
   lim n→∞.f1[n;x] f2[n;x] = λy.g1[y] g2[y] for x ∈ I)


Proof




Definitions occuring in Statement :  fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I rfun: I ⟶ℝ interval: Interval rsub: y nat: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I member: t ∈ T uall: [x:A]. B[x] prop: so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q guard: {T} less_than: a < b squash: T cand: c∧ B sq_stable: SqStable(P) int_upper: {i...} subinterval: I ⊆  rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q nat: ge: i ≥  uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y

Latex:
\mforall{}I:Interval.  \mforall{}f1,f2:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g1,g2:I  {}\mrightarrow{}\mBbbR{}.
    (lim  n\mrightarrow{}\minfty{}.f1[n;x]  =  \mlambda{}y.g1[y]  for  x  \mmember{}  I
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f2[n;x]  =  \mlambda{}y.g2[y]  for  x  \mmember{}  I
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f1[n;x]  -  f2[n;x]  =  \mlambda{}y.g1[y]  -  g2[y]  for  x  \mmember{}  I)



Date html generated: 2020_05_20-PM-01_05_17
Last ObjectModification: 2019_12_14-PM-02_56_37

Theory : reals


Home Index