Nuprl Definition : fun-series-converges
Σn.f[n; x]↓ for x ∈ I ==  λn.Σ{f[i; x] | 0≤i≤n}↓ for x ∈ I)
Definitions occuring in Statement : 
fun-converges: λn.f[n; x]↓ for x ∈ I)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
natural_number: $n
Definitions occuring in definition : 
fun-converges: λn.f[n; x]↓ for x ∈ I)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
natural_number: $n
FDL editor aliases : 
fun-series-converges
Latex:
\mSigma{}n.f[n;  x]\mdownarrow{}  for  x  \mmember{}  I  ==    \mlambda{}n.\mSigma{}\{f[i;  x]  |  0\mleq{}i\mleq{}n\}\mdownarrow{}  for  x  \mmember{}  I)
Date html generated:
2016_05_18-AM-09_54_53
Last ObjectModification:
2015_09_23-AM-09_14_15
Theory : reals
Home
Index