Nuprl Definition : fun-series-converges

Σn.f[n; x]↓ for x ∈ ==  λn.Σ{f[i; x] 0≤i≤n}↓ for x ∈ I)



Definitions occuring in Statement :  fun-converges: λn.f[n; x]↓ for x ∈ I) rsum: Σ{x[k] n≤k≤m} natural_number: $n
Definitions occuring in definition :  fun-converges: λn.f[n; x]↓ for x ∈ I) rsum: Σ{x[k] n≤k≤m} natural_number: $n
FDL editor aliases :  fun-series-converges

Latex:
\mSigma{}n.f[n;  x]\mdownarrow{}  for  x  \mmember{}  I  ==    \mlambda{}n.\mSigma{}\{f[i;  x]  |  0\mleq{}i\mleq{}n\}\mdownarrow{}  for  x  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_54_53
Last ObjectModification: 2015_09_23-AM-09_14_15

Theory : reals


Home Index