Nuprl Lemma : function-is-continuous

I:Interval. ∀f:I ⟶ℝ.  ((∀x,y:{t:ℝt ∈ I} .  ((x y)  (f[x] f[y])))  f[x] continuous for x ∈ I)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval req: y real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q continuous: f[x] continuous for x ∈ I member: t ∈ T uall: [x:A]. B[x] prop: so_apply: x[s] rfun: I ⟶ℝ nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] subtype_rel: A ⊆B ifun: ifun(f;I) real-fun: real-fun(f;a;b) subinterval: I ⊆  top: Top

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))  {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I)



Date html generated: 2020_05_20-PM-00_04_46
Last ObjectModification: 2020_01_08-AM-10_38_36

Theory : reals


Home Index