Nuprl Lemma : harmonic-series-diverges

Σn.(r1/r(n 1))↑


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ rdiv: (x/y) int-to-real: r(n) add: m natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] ge: i ≥  sq_exists: x:A [B[x]] rless: x < y le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] nat: false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) nat_plus: + cand: c∧ B prop: true: True less_than': less_than'(a;b) squash: T less_than: a < b implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] diverges: n.x[n]↑ series-diverges: Σn.x[n]↑ uiff: uiff(P;Q) sq_stable: SqStable(P) subtype_rel: A ⊆B primtailrec: primtailrec(n;i;b;f) primrec: primrec(n;b;c) exp: i^n subtract: m int_upper: {i...} top: Top real: rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 rge: x ≥ y assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 nequal: a ≠ b ∈ 

Latex:
\mSigma{}n.(r1/r(n  +  1))\muparrow{}



Date html generated: 2020_05_20-AM-11_21_18
Last ObjectModification: 2019_12_28-AM-11_02_27

Theory : reals


Home Index