Nuprl Lemma : homeo-image-homeomorphic-subtype
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)]. ∀[A:Type].
  h ∈ homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY) supposing metric-subspace(X;dX;A)
Proof
Definitions occuring in Statement : 
homeo-image: homeo-image(A;Y;dY;h)
, 
metric-subspace: metric-subspace(X;d;A)
, 
homeomorphic: homeomorphic(X;dX;Y;dY)
, 
metric: metric(X)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
metric-subspace: metric-subspace(X;d;A)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
homeomorphic: homeomorphic(X;dX;Y;dY)
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
homeo-image: homeo-image(A;Y;dY;h)
, 
mfun: FUN(X ⟶ Y)
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
prop: ℙ
, 
is-mfun: f:FUN(X;Y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].  \mforall{}[A:Type].
    h  \mmember{}  homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY)  supposing  metric-subspace(X;dX;A)
Date html generated:
2020_05_20-AM-11_51_51
Last ObjectModification:
2019_11_07-PM-02_37_47
Theory : reals
Home
Index