Nuprl Lemma : homeo-image-homeomorphic-subtype

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)]. ∀[A:Type].
  h ∈ homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY) supposing metric-subspace(X;dX;A)


Proof




Definitions occuring in Statement :  homeo-image: homeo-image(A;Y;dY;h) metric-subspace: metric-subspace(X;d;A) homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T metric-subspace: metric-subspace(X;d;A) and: P ∧ Q uiff: uiff(P;Q) homeomorphic: homeomorphic(X;dX;Y;dY) exists: x:A. B[x] sq_exists: x:A [B[x]] homeo-image: homeo-image(A;Y;dY;h) mfun: FUN(X ⟶ Y) subtype_rel: A ⊆B pi1: fst(t) prop: is-mfun: f:FUN(X;Y) all: x:A. B[x] implies:  Q so_apply: x[s]

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].  \mforall{}[A:Type].
    h  \mmember{}  homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY)  supposing  metric-subspace(X;dX;A)



Date html generated: 2020_05_20-AM-11_51_51
Last ObjectModification: 2019_11_07-PM-02_37_47

Theory : reals


Home Index