Nuprl Lemma : homeo-image-homeomorphic-subtype
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)]. ∀[A:Type].
  h ∈ homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY) supposing metric-subspace(X;dX;A)
Proof
Definitions occuring in Statement : 
homeo-image: homeo-image(A;Y;dY;h), 
metric-subspace: metric-subspace(X;d;A), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
metric: metric(X), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
metric-subspace: metric-subspace(X;d;A), 
and: P ∧ Q, 
uiff: uiff(P;Q), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
homeo-image: homeo-image(A;Y;dY;h), 
mfun: FUN(X ⟶ Y), 
subtype_rel: A ⊆r B, 
pi1: fst(t), 
prop: ℙ, 
is-mfun: f:FUN(X;Y), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_apply: x[s]
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].  \mforall{}[A:Type].
    h  \mmember{}  homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY)  supposing  metric-subspace(X;dX;A)
 Date html generated: 
2020_05_20-AM-11_51_51
 Last ObjectModification: 
2019_11_07-PM-02_37_47
Theory : reals
Home
Index