Nuprl Lemma : homeo-image-homeomorphic
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].
  ∀h:homeomorphic(X;dX;Y;dY). ∀[A:Type]. homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY) supposing metric-subspace(X;dX;A)
Proof
Definitions occuring in Statement : 
homeo-image: homeo-image(A;Y;dY;h)
, 
metric-subspace: metric-subspace(X;d;A)
, 
homeomorphic: homeomorphic(X;dX;Y;dY)
, 
metric: metric(X)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
metric-subspace: metric-subspace(X;d;A)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].
    \mforall{}h:homeomorphic(X;dX;Y;dY)
        \mforall{}[A:Type].  homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY)  supposing  metric-subspace(X;dX;A)
Date html generated:
2020_05_20-AM-11_52_11
Last ObjectModification:
2019_11_07-PM-02_45_47
Theory : reals
Home
Index