Nuprl Lemma : homeo-image-homeomorphic
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].
  ∀h:homeomorphic(X;dX;Y;dY). ∀[A:Type]. homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY) supposing metric-subspace(X;dX;A)
Proof
Definitions occuring in Statement : 
homeo-image: homeo-image(A;Y;dY;h), 
metric-subspace: metric-subspace(X;d;A), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
metric: metric(X), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
metric-subspace: metric-subspace(X;d;A), 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].
    \mforall{}h:homeomorphic(X;dX;Y;dY)
        \mforall{}[A:Type].  homeomorphic(A;dX;homeo-image(A;Y;dY;h);dY)  supposing  metric-subspace(X;dX;A)
 Date html generated: 
2020_05_20-AM-11_52_11
 Last ObjectModification: 
2019_11_07-PM-02_45_47
Theory : reals
Home
Index