Nuprl Lemma : homeo-image-inverse
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)]. ∀[A:Type].
homeo-image(homeo-image(A;Y;dY;h);X;dX;homeo-inv(h)) ≡ A supposing metric-subspace(X;dX;A)
Proof
Definitions occuring in Statement :
homeo-image: homeo-image(A;Y;dY;h)
,
metric-subspace: metric-subspace(X;d;A)
,
homeo-inv: homeo-inv(h)
,
homeomorphic: homeomorphic(X;dX;Y;dY)
,
metric: metric(X)
,
ext-eq: A ≡ B
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
metric-subspace: metric-subspace(X;d;A)
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
ext-eq: A ≡ B
,
subtype_rel: A ⊆r B
,
homeo-image: homeo-image(A;Y;dY;h)
,
prop: ℙ
,
exists: ∃x:A. B[x]
,
homeomorphic: homeomorphic(X;dX;Y;dY)
,
homeo-inv: homeo-inv(h)
,
pi1: fst(t)
,
sq_exists: ∃x:A [B[x]]
,
mfun: FUN(X ⟶ Y)
,
is-mfun: f:FUN(X;Y)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_apply: x[s]
,
guard: {T}
,
label: ...$L... t
,
meq: x ≡ y
,
req: x = y
,
sq_stable: SqStable(P)
,
squash: ↓T
,
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[X,Y:Type]. \mforall{}[dX:metric(X)]. \mforall{}[dY:metric(Y)]. \mforall{}[h:homeomorphic(X;dX;Y;dY)]. \mforall{}[A:Type].
homeo-image(homeo-image(A;Y;dY;h);X;dX;homeo-inv(h)) \mequiv{} A supposing metric-subspace(X;dX;A)
Date html generated:
2020_05_20-AM-11_51_10
Last ObjectModification:
2019_11_20-AM-10_57_17
Theory : reals
Home
Index