Nuprl Lemma : homeo-image-inverse

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)]. ∀[A:Type].
  homeo-image(homeo-image(A;Y;dY;h);X;dX;homeo-inv(h)) ≡ supposing metric-subspace(X;dX;A)


Proof




Definitions occuring in Statement :  homeo-image: homeo-image(A;Y;dY;h) metric-subspace: metric-subspace(X;d;A) homeo-inv: homeo-inv(h) homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a metric-subspace: metric-subspace(X;d;A) and: P ∧ Q uiff: uiff(P;Q) ext-eq: A ≡ B subtype_rel: A ⊆B homeo-image: homeo-image(A;Y;dY;h) prop: exists: x:A. B[x] homeomorphic: homeomorphic(X;dX;Y;dY) homeo-inv: homeo-inv(h) pi1: fst(t) sq_exists: x:A [B[x]] mfun: FUN(X ⟶ Y) is-mfun: f:FUN(X;Y) all: x:A. B[x] implies:  Q so_apply: x[s] guard: {T} label: ...$L... t meq: x ≡ y req: y sq_stable: SqStable(P) squash: T rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].  \mforall{}[A:Type].
    homeo-image(homeo-image(A;Y;dY;h);X;dX;homeo-inv(h))  \mequiv{}  A  supposing  metric-subspace(X;dX;A)



Date html generated: 2020_05_20-AM-11_51_10
Last ObjectModification: 2019_11_20-AM-10_57_17

Theory : reals


Home Index