Nuprl Lemma : homeo-image_wf
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)]. ∀[A:Type].
  homeo-image(A;Y;dY;h) ∈ Type supposing A ⊆r X
Proof
Definitions occuring in Statement : 
homeo-image: homeo-image(A;Y;dY;h), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
metric: metric(X), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
homeo-image: homeo-image(A;Y;dY;h), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
prop: ℙ, 
homeomorphic: homeomorphic(X;dX;Y;dY), 
pi1: fst(t), 
mfun: FUN(X ⟶ Y), 
subtype_rel: A ⊆r B
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].  \mforall{}[A:Type].
    homeo-image(A;Y;dY;h)  \mmember{}  Type  supposing  A  \msubseteq{}r  X
 Date html generated: 
2020_05_20-AM-11_50_49
 Last ObjectModification: 
2019_11_07-PM-01_50_40
Theory : reals
Home
Index