Nuprl Lemma : homeo-image_wf

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)]. ∀[A:Type].
  homeo-image(A;Y;dY;h) ∈ Type supposing A ⊆X


Proof




Definitions occuring in Statement :  homeo-image: homeo-image(A;Y;dY;h) homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a homeo-image: homeo-image(A;Y;dY;h) so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: homeomorphic: homeomorphic(X;dX;Y;dY) pi1: fst(t) mfun: FUN(X ⟶ Y) subtype_rel: A ⊆B

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].  \mforall{}[A:Type].
    homeo-image(A;Y;dY;h)  \mmember{}  Type  supposing  A  \msubseteq{}r  X



Date html generated: 2020_05_20-AM-11_50_49
Last ObjectModification: 2019_11_07-PM-01_50_40

Theory : reals


Home Index