Nuprl Lemma : homeo-inv_wf
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)].  (homeo-inv(h) ∈ homeomorphic(Y;dY;X;dX))
Proof
Definitions occuring in Statement : 
homeo-inv: homeo-inv(h)
, 
homeomorphic: homeomorphic(X;dX;Y;dY)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
homeomorphic: homeomorphic(X;dX;Y;dY)
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
homeo-inv: homeo-inv(h)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
mfun: FUN(X ⟶ Y)
, 
prop: ℙ
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].
    (homeo-inv(h)  \mmember{}  homeomorphic(Y;dY;X;dX))
Date html generated:
2020_05_20-AM-11_41_50
Last ObjectModification:
2019_11_12-AM-09_53_56
Theory : reals
Home
Index