Nuprl Lemma : homeomorphic-retraction

[X,A:Type]. ∀[d:metric(X)].
  Retract(X ⟶ A)  (∀Y:Type. ∀d':metric(Y). ∀h:homeomorphic(X;d;Y;d').  Retract(Y ⟶ homeo-image(A;Y;d';h))) 
  supposing metric-subspace(X;d;A)


Proof




Definitions occuring in Statement :  homeo-image: homeo-image(A;Y;dY;h) m-retraction: Retract(X ⟶ A) metric-subspace: metric-subspace(X;d;A) homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T metric-subspace: metric-subspace(X;d;A) and: P ∧ Q implies:  Q all: x:A. B[x] uiff: uiff(P;Q) m-retraction: Retract(X ⟶ A) homeomorphic: homeomorphic(X;dX;Y;dY) exists: x:A. B[x] sq_exists: x:A [B[x]] mfun: FUN(X ⟶ Y) homeo-image: homeo-image(A;Y;dY;h) subtype_rel: A ⊆B pi1: fst(t) prop: cand: c∧ B strong-subtype: strong-subtype(A;B) is-mfun: f:FUN(X;Y) so_apply: x[s] sq_stable: SqStable(P) squash: T guard: {T} rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[X,A:Type].  \mforall{}[d:metric(X)].
    Retract(X  {}\mrightarrow{}  A)
    {}\mRightarrow{}  (\mforall{}Y:Type.  \mforall{}d':metric(Y).  \mforall{}h:homeomorphic(X;d;Y;d').    Retract(Y  {}\mrightarrow{}  homeo-image(A;Y;d';h))) 
    supposing  metric-subspace(X;d;A)



Date html generated: 2020_05_20-AM-11_52_59
Last ObjectModification: 2019_11_11-PM-02_23_45

Theory : reals


Home Index