Nuprl Lemma : homeomorphic-retraction
∀[X,A:Type]. ∀[d:metric(X)].
  Retract(X ⟶ A) ⇒ (∀Y:Type. ∀d':metric(Y). ∀h:homeomorphic(X;d;Y;d').  Retract(Y ⟶ homeo-image(A;Y;d';h))) 
  supposing metric-subspace(X;d;A)
Proof
Definitions occuring in Statement : 
homeo-image: homeo-image(A;Y;dY;h), 
m-retraction: Retract(X ⟶ A), 
metric-subspace: metric-subspace(X;d;A), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
metric: metric(X), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
metric-subspace: metric-subspace(X;d;A), 
and: P ∧ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
m-retraction: Retract(X ⟶ A), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
mfun: FUN(X ⟶ Y), 
homeo-image: homeo-image(A;Y;dY;h), 
subtype_rel: A ⊆r B, 
pi1: fst(t), 
prop: ℙ, 
cand: A c∧ B, 
strong-subtype: strong-subtype(A;B), 
is-mfun: f:FUN(X;Y), 
so_apply: x[s], 
sq_stable: SqStable(P), 
squash: ↓T, 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[X,A:Type].  \mforall{}[d:metric(X)].
    Retract(X  {}\mrightarrow{}  A)
    {}\mRightarrow{}  (\mforall{}Y:Type.  \mforall{}d':metric(Y).  \mforall{}h:homeomorphic(X;d;Y;d').    Retract(Y  {}\mrightarrow{}  homeo-image(A;Y;d';h)))  
    supposing  metric-subspace(X;d;A)
 Date html generated: 
2020_05_20-AM-11_52_59
 Last ObjectModification: 
2019_11_11-PM-02_23_45
Theory : reals
Home
Index