Nuprl Lemma : i-approx-elim

I:Interval. ∀n:ℕ+.  (i-nonvoid(i-approx(I;n))  (∃a:ℝ. ∃b:{b:ℝa ≤ b} (i-approx(I;n) [a, b] ∈ Interval)))


Proof




Definitions occuring in Statement :  i-nonvoid: i-nonvoid(I) i-approx: i-approx(I;n) rccint: [l, u] interval: Interval rleq: x ≤ y real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B exists: x:A. B[x] prop: i-nonvoid: i-nonvoid(I) top: Top guard: {T}

Latex:
\mforall{}I:Interval.  \mforall{}n:\mBbbN{}\msupplus{}.    (i-nonvoid(i-approx(I;n))  {}\mRightarrow{}  (\mexists{}a:\mBbbR{}.  \mexists{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  (i-approx(I;n)  =  [a,  b]))\000C)



Date html generated: 2020_05_20-AM-11_33_33
Last ObjectModification: 2019_12_06-PM-02_17_17

Theory : reals


Home Index