Nuprl Lemma : i-finite-closed-is-rccint
∀[I:Interval]. I ~ [left-endpoint(I), right-endpoint(I)] supposing i-finite(I) ∧ i-closed(I)
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-closed: i-closed(I)
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
interval: Interval
, 
i-closed: i-closed(I)
, 
isl: isl(x)
, 
outl: outl(x)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bor: p ∨bq
, 
bfalse: ff
, 
assert: ↑b
, 
i-finite: i-finite(I)
, 
rccint: [l, u]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
false: False
, 
prop: ℙ
Latex:
\mforall{}[I:Interval].  I  \msim{}  [left-endpoint(I),  right-endpoint(I)]  supposing  i-finite(I)  \mwedge{}  i-closed(I)
Date html generated:
2020_05_20-AM-11_32_43
Last ObjectModification:
2019_12_06-PM-02_02_19
Theory : reals
Home
Index