Nuprl Lemma : i-finite-closed-is-rccint
∀[I:Interval]. I ~ [left-endpoint(I), right-endpoint(I)] supposing i-finite(I) ∧ i-closed(I)
Proof
Definitions occuring in Statement : 
rccint: [l, u], 
i-closed: i-closed(I), 
right-endpoint: right-endpoint(I), 
left-endpoint: left-endpoint(I), 
i-finite: i-finite(I), 
interval: Interval, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
interval: Interval, 
i-closed: i-closed(I), 
isl: isl(x), 
outl: outl(x), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bor: p ∨bq, 
bfalse: ff, 
assert: ↑b, 
i-finite: i-finite(I), 
rccint: [l, u], 
all: ∀x:A. B[x], 
top: Top, 
false: False, 
prop: ℙ
Latex:
\mforall{}[I:Interval].  I  \msim{}  [left-endpoint(I),  right-endpoint(I)]  supposing  i-finite(I)  \mwedge{}  i-closed(I)
 Date html generated: 
2020_05_20-AM-11_32_43
 Last ObjectModification: 
2019_12_06-PM-02_02_19
Theory : reals
Home
Index