Nuprl Lemma : i-finite-closed-is-rccint
∀[I:Interval]. I ~ [left-endpoint(I), right-endpoint(I)] supposing i-finite(I) ∧ i-closed(I)
Proof
Definitions occuring in Statement :
rccint: [l, u]
,
i-closed: i-closed(I)
,
right-endpoint: right-endpoint(I)
,
left-endpoint: left-endpoint(I)
,
i-finite: i-finite(I)
,
interval: Interval
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
interval: Interval
,
i-closed: i-closed(I)
,
isl: isl(x)
,
outl: outl(x)
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bor: p ∨bq
,
bfalse: ff
,
assert: ↑b
,
i-finite: i-finite(I)
,
rccint: [l, u]
,
all: ∀x:A. B[x]
,
top: Top
,
false: False
,
prop: ℙ
Latex:
\mforall{}[I:Interval]. I \msim{} [left-endpoint(I), right-endpoint(I)] supposing i-finite(I) \mwedge{} i-closed(I)
Date html generated:
2020_05_20-AM-11_32_43
Last ObjectModification:
2019_12_06-PM-02_02_19
Theory : reals
Home
Index