Nuprl Lemma : i-finite-closed-is-rccint

[I:Interval]. [left-endpoint(I), right-endpoint(I)] supposing i-finite(I) ∧ i-closed(I)


Proof




Definitions occuring in Statement :  rccint: [l, u] i-closed: i-closed(I) right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) i-finite: i-finite(I) interval: Interval uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q interval: Interval i-closed: i-closed(I) isl: isl(x) outl: outl(x) bnot: ¬bb ifthenelse: if then else fi  btrue: tt bor: p ∨bq bfalse: ff assert: b i-finite: i-finite(I) rccint: [l, u] all: x:A. B[x] top: Top false: False prop:

Latex:
\mforall{}[I:Interval].  I  \msim{}  [left-endpoint(I),  right-endpoint(I)]  supposing  i-finite(I)  \mwedge{}  i-closed(I)



Date html generated: 2020_05_20-AM-11_32_43
Last ObjectModification: 2019_12_06-PM-02_02_19

Theory : reals


Home Index