Nuprl Definition : i-type

i-type(I) ==  n:ℕ+ × {r:ℝr ∈ i-approx(I;n)} 



Definitions occuring in Statement :  i-approx: i-approx(I;n) i-member: r ∈ I real: nat_plus: + set: {x:A| B[x]}  product: x:A × B[x]
Definitions occuring in definition :  product: x:A × B[x] nat_plus: + set: {x:A| B[x]}  real: i-member: r ∈ I i-approx: i-approx(I;n)
FDL editor aliases :  i-type i-type

Latex:
i-type(I)  ==    n:\mBbbN{}\msupplus{}  \mtimes{}  \{r:\mBbbR{}|  r  \mmember{}  i-approx(I;n)\} 



Date html generated: 2016_05_18-AM-08_44_04
Last ObjectModification: 2015_09_23-AM-09_07_35

Theory : reals


Home Index