Nuprl Definition : i-type
i-type(I) ==  n:ℕ+ × {r:ℝ| r ∈ i-approx(I;n)} 
Definitions occuring in Statement : 
i-approx: i-approx(I;n)
, 
i-member: r ∈ I
, 
real: ℝ
, 
nat_plus: ℕ+
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
Definitions occuring in definition : 
product: x:A × B[x]
, 
nat_plus: ℕ+
, 
set: {x:A| B[x]} 
, 
real: ℝ
, 
i-member: r ∈ I
, 
i-approx: i-approx(I;n)
FDL editor aliases : 
i-type
i-type
Latex:
i-type(I)  ==    n:\mBbbN{}\msupplus{}  \mtimes{}  \{r:\mBbbR{}|  r  \mmember{}  i-approx(I;n)\} 
Date html generated:
2016_05_18-AM-08_44_04
Last ObjectModification:
2015_09_23-AM-09_07_35
Theory : reals
Home
Index