Nuprl Definition : inf

inf(A) ==  lower-bound(A;b) ∧ (∀e:ℝ((r0 < e)  (∃x:ℝ((x ∈ A) ∧ (x < (b e))))))



Definitions occuring in Statement :  lower-bound: lower-bound(A;b) rset-member: x ∈ A rless: x < y radd: b int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions occuring in definition :  lower-bound: lower-bound(A;b) all: x:A. B[x] implies:  Q int-to-real: r(n) natural_number: $n exists: x:A. B[x] real: and: P ∧ Q rset-member: x ∈ A rless: x < y radd: b
FDL editor aliases :  inf inf

Latex:
inf(A)  =  b  ==    lower-bound(A;b)  \mwedge{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  ((x  \mmember{}  A)  \mwedge{}  (x  <  (b  +  e))))))



Date html generated: 2016_05_18-AM-08_10_28
Last ObjectModification: 2015_09_23-AM-09_04_24

Theory : reals


Home Index