Nuprl Lemma : int-rdiv-req

[k:ℤ-o]. ∀[a:ℝ].  ((a)/k (a/r(k)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) int-rdiv: (a)/k1 req: y int-to-real: r(n) real: int_nzero: -o uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) int_nzero: -o not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rdiv: (x/y) req_int_terms: t1 ≡ t2

Latex:
\mforall{}[k:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[a:\mBbbR{}].    ((a)/k  =  (a/r(k)))



Date html generated: 2020_05_20-AM-11_00_21
Last ObjectModification: 2019_12_26-PM-10_05_36

Theory : reals


Home Index