Nuprl Lemma : interval-fun-maps-compact
∀I,J:Interval. ∀f:I ⟶ℝ.  (interval-fun(I;J;x.f[x]) ⇒ maps-compact(I;J;x.f[x]))
Proof
Definitions occuring in Statement : 
interval-fun: interval-fun(I;J;x.f[x]), 
maps-compact: maps-compact(I;J;x.f[x]), 
rfun: I ⟶ℝ, 
interval: Interval, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
maps-compact: maps-compact(I;J;x.f[x]), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
sq_stable: SqStable(P), 
squash: ↓T, 
interval-fun: interval-fun(I;J;x.f[x]), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
interval: Interval, 
rccint: [l, u], 
rocint: (l, u], 
rcoint: [l, u), 
rooint: (l, u), 
cand: A c∧ B, 
subinterval: I ⊆ J , 
top: Top, 
guard: {T}, 
i-member: r ∈ I, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
true: True, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Latex:
\mforall{}I,J:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (interval-fun(I;J;x.f[x])  {}\mRightarrow{}  maps-compact(I;J;x.f[x]))
 Date html generated: 
2020_05_20-PM-00_26_05
 Last ObjectModification: 
2019_12_05-PM-06_56_32
Theory : reals
Home
Index