Nuprl Lemma : interval-fun-maps-compact

I,J:Interval. ∀f:I ⟶ℝ.  (interval-fun(I;J;x.f[x])  maps-compact(I;J;x.f[x]))


Proof




Definitions occuring in Statement :  interval-fun: interval-fun(I;J;x.f[x]) maps-compact: maps-compact(I;J;x.f[x]) rfun: I ⟶ℝ interval: Interval so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q maps-compact: maps-compact(I;J;x.f[x]) member: t ∈ T uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T interval-fun: interval-fun(I;J;x.f[x]) and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] prop: subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] interval: Interval rccint: [l, u] rocint: (l, u] rcoint: [l, u) rooint: (l, u) cand: c∧ B subinterval: I ⊆  top: Top guard: {T} i-member: r ∈ I rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A true: True nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla)

Latex:
\mforall{}I,J:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (interval-fun(I;J;x.f[x])  {}\mRightarrow{}  maps-compact(I;J;x.f[x]))



Date html generated: 2020_05_20-PM-00_26_05
Last ObjectModification: 2019_12_05-PM-06_56_32

Theory : reals


Home Index