Nuprl Lemma : interval-fun-maps-compact
∀I,J:Interval. ∀f:I ⟶ℝ.  (interval-fun(I;J;x.f[x]) 
⇒ maps-compact(I;J;x.f[x]))
Proof
Definitions occuring in Statement : 
interval-fun: interval-fun(I;J;x.f[x])
, 
maps-compact: maps-compact(I;J;x.f[x])
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
maps-compact: maps-compact(I;J;x.f[x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
interval-fun: interval-fun(I;J;x.f[x])
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
interval: Interval
, 
rccint: [l, u]
, 
rocint: (l, u]
, 
rcoint: [l, u)
, 
rooint: (l, u)
, 
cand: A c∧ B
, 
subinterval: I ⊆ J 
, 
top: Top
, 
guard: {T}
, 
i-member: r ∈ I
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
true: True
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Latex:
\mforall{}I,J:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (interval-fun(I;J;x.f[x])  {}\mRightarrow{}  maps-compact(I;J;x.f[x]))
Date html generated:
2020_05_20-PM-00_26_05
Last ObjectModification:
2019_12_05-PM-06_56_32
Theory : reals
Home
Index