Nuprl Lemma : interval-fun-real-fun
∀[a,b:ℝ]. ∀[f:[a, b] ⟶ℝ]. real-fun(f;a;b) supposing ∃J:Interval. interval-fun([a, b];J;x.f[x])
Proof
Definitions occuring in Statement :
interval-fun: interval-fun(I;J;x.f[x])
,
real-fun: real-fun(f;a;b)
,
rfun: I ⟶ℝ
,
rccint: [l, u]
,
interval: Interval
,
real: ℝ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
exists: ∃x:A. B[x]
,
interval-fun: interval-fun(I;J;x.f[x])
,
and: P ∧ Q
,
real-fun: real-fun(f;a;b)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_apply: x[s]
,
prop: ℙ
,
rfun: I ⟶ℝ
,
so_lambda: λ2x.t[x]
,
label: ...$L... t
Latex:
\mforall{}[a,b:\mBbbR{}]. \mforall{}[f:[a, b] {}\mrightarrow{}\mBbbR{}]. real-fun(f;a;b) supposing \mexists{}J:Interval. interval-fun([a, b];J;x.f[x])
Date html generated:
2020_05_20-PM-00_25_35
Last ObjectModification:
2019_12_05-PM-05_52_26
Theory : reals
Home
Index