Nuprl Lemma : interval-fun-real-fun
∀[a,b:ℝ]. ∀[f:[a, b] ⟶ℝ].  real-fun(f;a;b) supposing ∃J:Interval. interval-fun([a, b];J;x.f[x])
Proof
Definitions occuring in Statement : 
interval-fun: interval-fun(I;J;x.f[x])
, 
real-fun: real-fun(f;a;b)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
interval: Interval
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
interval-fun: interval-fun(I;J;x.f[x])
, 
and: P ∧ Q
, 
real-fun: real-fun(f;a;b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
rfun: I ⟶ℝ
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    real-fun(f;a;b)  supposing  \mexists{}J:Interval.  interval-fun([a,  b];J;x.f[x])
Date html generated:
2020_05_20-PM-00_25_35
Last ObjectModification:
2019_12_05-PM-05_52_26
Theory : reals
Home
Index