Nuprl Lemma : interval-fun-real-fun

[a,b:ℝ]. ∀[f:[a, b] ⟶ℝ].  real-fun(f;a;b) supposing ∃J:Interval. interval-fun([a, b];J;x.f[x])


Proof




Definitions occuring in Statement :  interval-fun: interval-fun(I;J;x.f[x]) real-fun: real-fun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] interval: Interval real: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] interval-fun: interval-fun(I;J;x.f[x]) and: P ∧ Q real-fun: real-fun(f;a;b) all: x:A. B[x] implies:  Q so_apply: x[s] prop: rfun: I ⟶ℝ so_lambda: λ2x.t[x] label: ...$L... t

Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    real-fun(f;a;b)  supposing  \mexists{}J:Interval.  interval-fun([a,  b];J;x.f[x])



Date html generated: 2020_05_20-PM-00_25_35
Last ObjectModification: 2019_12_05-PM-05_52_26

Theory : reals


Home Index