Nuprl Lemma : interval-to-int-bounded

a:ℝ. ∀b:{b:ℝa ≤ b} . ∀f:{x:ℝx ∈ [a, b]}  ⟶ ℤ.
  ∃B:ℕ. ∀x:{x:ℝx ∈ [a, b]} . ∃y:{x:ℝx ∈ [a, b]} ((x y) ∧ (|f y| ≤ B))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rleq: x ≤ y req: y real: absval: |i| nat: le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] sq_stable: SqStable(P) implies:  Q squash: T mcompact: mcompact(X;d) prop: subtype_rel: A ⊆B top: Top exists: x:A. B[x] and: P ∧ Q iff: ⇐⇒ Q cand: c∧ B nat:

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    {}\mrightarrow{}  \mBbbZ{}.
    \mexists{}B:\mBbbN{}.  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  \mexists{}y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  ((x  =  y)  \mwedge{}  (|f  y|  \mleq{}  B))



Date html generated: 2020_05_20-PM-00_01_46
Last ObjectModification: 2019_12_06-PM-01_30_36

Theory : reals


Home Index