Nuprl Lemma : iproper-subinterval

I,J:Interval.  (I ⊆ J   iproper(I)  iproper(J))


Proof




Definitions occuring in Statement :  subinterval: I ⊆  iproper: iproper(I) interval: Interval all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: icompact: icompact(I) and: P ∧ Q iproper: iproper(I) top: Top i-finite: i-finite(I) rccint: [l, u] isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt cand: c∧ B true: True subinterval: I ⊆  i-member: r ∈ I guard: {T} rbetween: x≤y≤z i-nonvoid: i-nonvoid(I) exists: x:A. B[x] iff: ⇐⇒ Q

Latex:
\mforall{}I,J:Interval.    (I  \msubseteq{}  J    {}\mRightarrow{}  iproper(I)  {}\mRightarrow{}  iproper(J))



Date html generated: 2020_05_20-AM-11_35_22
Last ObjectModification: 2019_12_06-AM-10_15_11

Theory : reals


Home Index