Nuprl Lemma : is-mfun-compose

[X,Y,Z:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[d'':metric(Z)]. ∀[f:X ⟶ Y]. ∀[g:Y ⟶ Z].
  (g  f:FUN(X;Z)) supposing (g:FUN(Y;Z) and f:FUN(X;Y))


Proof




Definitions occuring in Statement :  is-mfun: f:FUN(X;Y) metric: metric(X) compose: g uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a is-mfun: f:FUN(X;Y) all: x:A. B[x] implies:  Q so_apply: x[s] compose: g prop: meq: x ≡ y metric: metric(X)

Latex:
\mforall{}[X,Y,Z:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[d'':metric(Z)].  \mforall{}[f:X  {}\mrightarrow{}  Y].  \mforall{}[g:Y  {}\mrightarrow{}  Z].
    (g    o  f:FUN(X;Z))  supposing  (g:FUN(Y;Z)  and  f:FUN(X;Y))



Date html generated: 2020_05_20-AM-11_39_55
Last ObjectModification: 2019_11_15-PM-03_13_22

Theory : reals


Home Index