Nuprl Lemma : is-mfun-compose
∀[X,Y,Z:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[d'':metric(Z)]. ∀[f:X ⟶ Y]. ∀[g:Y ⟶ Z].
  (g  o f:FUN(X;Z)) supposing (g:FUN(Y;Z) and f:FUN(X;Y))
Proof
Definitions occuring in Statement : 
is-mfun: f:FUN(X;Y)
, 
metric: metric(X)
, 
compose: f o g
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
is-mfun: f:FUN(X;Y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
compose: f o g
, 
prop: ℙ
, 
meq: x ≡ y
, 
metric: metric(X)
Latex:
\mforall{}[X,Y,Z:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[d'':metric(Z)].  \mforall{}[f:X  {}\mrightarrow{}  Y].  \mforall{}[g:Y  {}\mrightarrow{}  Z].
    (g    o  f:FUN(X;Z))  supposing  (g:FUN(Y;Z)  and  f:FUN(X;Y))
Date html generated:
2020_05_20-AM-11_39_55
Last ObjectModification:
2019_11_15-PM-03_13_22
Theory : reals
Home
Index