Nuprl Definition : is-partition-choice
is-partition-choice(p;x) == ∀i:ℕ||p|| - 1. (x i ∈ [p[i], p[i + 1]])
Definitions occuring in Statement :
rccint: [l, u]
,
i-member: r ∈ I
,
select: L[n]
,
length: ||as||
,
int_seg: {i..j-}
,
all: ∀x:A. B[x]
,
apply: f a
,
subtract: n - m
,
add: n + m
,
natural_number: $n
Definitions occuring in definition :
all: ∀x:A. B[x]
,
int_seg: {i..j-}
,
subtract: n - m
,
length: ||as||
,
i-member: r ∈ I
,
rccint: [l, u]
,
select: L[n]
,
add: n + m
,
natural_number: $n
,
apply: f a
FDL editor aliases :
is-partition-choice
Latex:
is-partition-choice(p;x) == \mforall{}i:\mBbbN{}||p|| - 1. (x i \mmember{} [p[i], p[i + 1]])
Date html generated:
2016_05_18-AM-09_03_02
Last ObjectModification:
2015_09_23-AM-09_09_36
Theory : reals
Home
Index