Nuprl Definition : m-closed-subspace

m-closed-subspace(X;d;A) ==  ∀x:X. ((∀k:ℕ+. ∃a:A. (mdist(d;x;a) ≤ (r1/r(k))))  (x ∈ A))



Definitions occuring in Statement :  mdist: mdist(d;x;y) rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q member: t ∈ T natural_number: $n
Definitions occuring in definition :  member: t ∈ T int-to-real: r(n) natural_number: $n rdiv: (x/y) mdist: mdist(d;x;y) rleq: x ≤ y exists: x:A. B[x] nat_plus: + all: x:A. B[x] implies:  Q
FDL editor aliases :  m-closed-subspace

Latex:
m-closed-subspace(X;d;A)  ==    \mforall{}x:X.  ((\mforall{}k:\mBbbN{}\msupplus{}.  \mexists{}a:A.  (mdist(d;x;a)  \mleq{}  (r1/r(k))))  {}\mRightarrow{}  (x  \mmember{}  A))



Date html generated: 2019_10_30-AM-06_31_47
Last ObjectModification: 2019_10_23-PM-06_17_56

Theory : reals


Home Index