Nuprl Definition : m-interior-point
m-interior-point(X;d;A;p) ==  ∃M:ℕ+. ∀x:X. ((mdist(d;x;p) ≤ (r1/r(M))) 
⇒ (x ∈ A))
Definitions occuring in Statement : 
mdist: mdist(d;x;y)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
natural_number: $n
FDL editor aliases : 
m-interior-point
Latex:
m-interior-point(X;d;A;p)  ==    \mexists{}M:\mBbbN{}\msupplus{}.  \mforall{}x:X.  ((mdist(d;x;p)  \mleq{}  (r1/r(M)))  {}\mRightarrow{}  (x  \mmember{}  A))
Date html generated:
2020_05_20-AM-11_43_11
Last ObjectModification:
2019_11_07-AM-10_03_41
Theory : reals
Home
Index