Nuprl Lemma : m-open-set

[X:Type]. ∀[d:metric(X)]. ∀[A:X ⟶ ℙ].  (m-open(X;d;x.A[x])  m-set(X;d;x.A[x]))


Proof




Definitions occuring in Statement :  m-set: m-set(X;d;x.A[x]) m-open: m-open(X;d;x.A[x]) metric: metric(X) uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q m-open: m-open(X;d;x.A[x]) m-set: m-set(X;d;x.A[x]) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T exists: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B prop: rev_implies:  Q so_lambda: λ2x.t[x] nat_plus: + uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:X  {}\mrightarrow{}  \mBbbP{}].    (m-open(X;d;x.A[x])  {}\mRightarrow{}  m-set(X;d;x.A[x]))



Date html generated: 2020_05_20-AM-11_55_13
Last ObjectModification: 2020_01_12-PM-00_36_38

Theory : reals


Home Index