Nuprl Lemma : m-open-set
∀[X:Type]. ∀[d:metric(X)]. ∀[A:X ⟶ ℙ].  (m-open(X;d;x.A[x]) 
⇒ m-set(X;d;x.A[x]))
Proof
Definitions occuring in Statement : 
m-set: m-set(X;d;x.A[x])
, 
m-open: m-open(X;d;x.A[x])
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
m-open: m-open(X;d;x.A[x])
, 
m-set: m-set(X;d;x.A[x])
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:X  {}\mrightarrow{}  \mBbbP{}].    (m-open(X;d;x.A[x])  {}\mRightarrow{}  m-set(X;d;x.A[x]))
Date html generated:
2020_05_20-AM-11_55_13
Last ObjectModification:
2020_01_12-PM-00_36_38
Theory : reals
Home
Index