Nuprl Lemma : m-retraction-subtype2

[X,A,B:Type].  ∀[d:metric(X)]. Retract(X ⟶ A) ⊆Retract(X ⟶ B) supposing B ⊆supposing A ≡ B


Proof




Definitions occuring in Statement :  m-retraction: Retract(X ⟶ A) metric: metric(X) ext-eq: A ≡ B uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: ext-eq: A ≡ B and: P ∧ Q guard: {T}

Latex:
\mforall{}[X,A,B:Type].    \mforall{}[d:metric(X)].  Retract(X  {}\mrightarrow{}  A)  \msubseteq{}r  Retract(X  {}\mrightarrow{}  B)  supposing  B  \msubseteq{}r  X  supposing  A  \mequiv{}  B



Date html generated: 2020_05_20-AM-11_50_06
Last ObjectModification: 2019_11_20-PM-11_45_03

Theory : reals


Home Index