Nuprl Lemma : m-retraction_functionality

[X,Y:Type].
  ∀[A,B:Type].  ∀[d:metric(X)]. Retract(X ⟶ A) ≡ Retract(Y ⟶ B) supposing A ⊆supposing A ≡ supposing X ≡ Y


Proof




Definitions occuring in Statement :  m-retraction: Retract(X ⟶ A) metric: metric(X) ext-eq: A ≡ B uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T m-retraction: Retract(X ⟶ A) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} all: x:A. B[x] cand: c∧ B is-mfun: f:FUN(X;Y) prop:

Latex:
\mforall{}[X,Y:Type].
    \mforall{}[A,B:Type].    \mforall{}[d:metric(X)].  Retract(X  {}\mrightarrow{}  A)  \mequiv{}  Retract(Y  {}\mrightarrow{}  B)  supposing  A  \msubseteq{}r  X  supposing  A  \mequiv{}  B 
    supposing  X  \mequiv{}  Y



Date html generated: 2020_05_20-AM-11_49_26
Last ObjectModification: 2019_11_20-PM-11_42_13

Theory : reals


Home Index