Nuprl Definition : m-unif-cont

UC(f:X ⟶ Y) ==  ∀k:ℕ+. ∃delta:{d:ℝr0 < d} . ∀x,y:X.  ((mdist(dx;x;y) ≤ delta)  (mdist(dy;f x;f y) ≤ (r1/r(k))))



Definitions occuring in Statement :  mdist: mdist(d;x;y) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions occuring in definition :  int-to-real: r(n) natural_number: $n rdiv: (x/y) apply: a mdist: mdist(d;x;y) rleq: x ≤ y implies:  Q all: x:A. B[x] rless: x < y real: set: {x:A| B[x]}  exists: x:A. B[x] nat_plus: +
FDL editor aliases :  m-unif-cont m-unif-cont m-unif-cont

Latex:
UC(f:X  {}\mrightarrow{}  Y)  ==
    \mforall{}k:\mBbbN{}\msupplus{}.  \mexists{}delta:\{d:\mBbbR{}|  r0  <  d\}  .  \mforall{}x,y:X.    ((mdist(dx;x;y)  \mleq{}  delta)  {}\mRightarrow{}  (mdist(dy;f  x;f  y)  \mleq{}  (r1/r(k)))\000C)



Date html generated: 2019_10_30-AM-06_35_47
Last ObjectModification: 2019_10_25-PM-01_19_08

Theory : reals


Home Index