Nuprl Definition : maps-compact-proper
maps-compact-proper(I;J;x.f[x]) ==
  ∀n:{n:ℕ+| icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))} 
    ∃m:{m:ℕ+| icompact(i-approx(J;m)) ∧ iproper(i-approx(J;m))} . ∀x:{x:ℝ| x ∈ i-approx(I;n)} . (f[x] ∈ i-approx(J;m))
Definitions occuring in Statement : 
icompact: icompact(I)
, 
i-approx: i-approx(I;n)
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions occuring in definition : 
i-approx: i-approx(I;n)
, 
i-member: r ∈ I
, 
real: ℝ
, 
set: {x:A| B[x]} 
, 
all: ∀x:A. B[x]
, 
iproper: iproper(I)
, 
icompact: icompact(I)
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
FDL editor aliases : 
maps-compact-proper
Latex:
maps-compact-proper(I;J;x.f[x])  ==
    \mforall{}n:\{n:\mBbbN{}\msupplus{}|  icompact(i-approx(I;n))  \mwedge{}  iproper(i-approx(I;n))\} 
        \mexists{}m:\{m:\mBbbN{}\msupplus{}|  icompact(i-approx(J;m))  \mwedge{}  iproper(i-approx(J;m))\} 
          \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  i-approx(I;n)\}  .  (f[x]  \mmember{}  i-approx(J;m))
Date html generated:
2016_10_26-AM-09_58_17
Last ObjectModification:
2016_08_24-PM-00_55_52
Theory : reals
Home
Index