Nuprl Lemma : mcompact-finite-subcover

[X:Type]
  ∀d:metric(X)
    (mcompact(X;d)
     (∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ].  (m-open-cover(X;d;I;i,x.A[i;x])  (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x]))))


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) m-open-cover: m-open-cover(X;d;I;i,x.A[i; x]) metric: metric(X) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] mcompact: mcompact(X;d) subtype_rel: A ⊆B nat_plus: + prop: nat: uimplies: supposing a rev_implies:  Q not: ¬A ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) rneq: x ≠ y guard: {T} or: P ∨ Q decidable: Dec(P) squash: T true: True uiff: uiff(P;Q) le: A ≤ B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        (mcompact(X;d)
        {}\mRightarrow{}  (\mforall{}[I:Type].  \mforall{}[A:I  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}].
                    (m-open-cover(X;d;I;i,x.A[i;x])  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}L:\mBbbN{}n  {}\mrightarrow{}  I.  \mforall{}x:X.  \mexists{}j:\mBbbN{}n.  A[L  j;x]))))



Date html generated: 2020_05_20-PM-00_02_35
Last ObjectModification: 2020_01_12-PM-01_47_17

Theory : reals


Home Index