Nuprl Lemma : mcompose_wf

[X,Y,Z:Type].
  ∀dx:metric(X). ∀dy:metric(Y). ∀dz:metric(Z).  ∀[f:FUN(X ⟶ Y)]. ∀[g:FUN(Y ⟶ Z)].  (mcompose(f;g) ∈ FUN(X ⟶ Z))


Proof




Definitions occuring in Statement :  mcompose: mcompose(f;g) mfun: FUN(X ⟶ Y) metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  mcompose: mcompose(f;g) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]

Latex:
\mforall{}[X,Y,Z:Type].
    \mforall{}dx:metric(X).  \mforall{}dy:metric(Y).  \mforall{}dz:metric(Z).
        \mforall{}[f:FUN(X  {}\mrightarrow{}  Y)].  \mforall{}[g:FUN(Y  {}\mrightarrow{}  Z)].    (mcompose(f;g)  \mmember{}  FUN(X  {}\mrightarrow{}  Z))



Date html generated: 2020_05_20-AM-11_40_33
Last ObjectModification: 2019_11_20-PM-02_13_04

Theory : reals


Home Index