Nuprl Lemma : mdist-max-metric-ub

[n:ℕ]. ∀[x,y:ℝ^n].  ∀i:ℕn. (|(x i) i| ≤ mdist(max-metric(n);x;y))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) real-vec: ^n mdist: mdist(d;x;y) rleq: x ≤ y rabs: |x| rsub: y int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  max-metric: max-metric(n) mdist: mdist(d;x;y) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) real-vec: ^n so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    \mforall{}i:\mBbbN{}n.  (|(x  i)  -  y  i|  \mleq{}  mdist(max-metric(n);x;y))



Date html generated: 2020_05_20-PM-00_42_21
Last ObjectModification: 2019_11_12-AM-11_17_22

Theory : reals


Home Index