Nuprl Lemma : member-rcc-min-max
∀[x,y,t:ℝ].  uiff(t ∈ [rmin(x;y), rmax(x;y)];(|t - x| ≤ |y - x|) ∧ (|t - y| ≤ |y - x|))
Proof
Definitions occuring in Statement : 
rccint: [l, u], 
i-member: r ∈ I, 
rleq: x ≤ y, 
rabs: |x|, 
rmin: rmin(x;y), 
rmax: rmax(x;y), 
rsub: x - y, 
real: ℝ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T
Latex:
\mforall{}[x,y,t:\mBbbR{}].    uiff(t  \mmember{}  [rmin(x;y),  rmax(x;y)];(|t  -  x|  \mleq{}  |y  -  x|)  \mwedge{}  (|t  -  y|  \mleq{}  |y  -  x|))
 Date html generated: 
2020_05_20-AM-11_35_57
 Last ObjectModification: 
2019_12_20-PM-00_41_28
Theory : reals
Home
Index