Nuprl Lemma : metric-leq-complete

[X:Type]. ∀[d1,d2:metric(X)].
  (d2 ≤ d1
   (∀x:ℕ ⟶ X. (mcauchy(d2;n.x n)  (∃y:ℕ ⟶ X. (subsequence(a,b.a ≡ b;n.x n;n.y n) ∧ mcauchy(d1;n.y n)))))
   mcomplete(X with d1)
   mcomplete(X with d2))


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) mcauchy: mcauchy(d;n.x[n]) mk-metric-space: with d metric-leq: d1 ≤ d2 meq: x ≡ y metric: metric(X) subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]) nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q mcomplete: mcomplete(M) mk-metric-space: with d all: x:A. B[x] metric: metric(X) so_lambda: λ2x.t[x] so_apply: x[s] prop: exists: x:A. B[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] mconverges: x[n]↓ as n→∞ mconverges-to: lim n→∞.x[n] y mcauchy: mcauchy(d;n.x[n]) nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False sq_exists: x:A [B[x]] nat: ge: i ≥  subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]) guard: {T} cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q rneq: x ≠ y rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 top: Top metric-leq: d1 ≤ d2

Latex:
\mforall{}[X:Type].  \mforall{}[d1,d2:metric(X)].
    (d2  \mleq{}  d1
    {}\mRightarrow{}  (\mforall{}x:\mBbbN{}  {}\mrightarrow{}  X
                (mcauchy(d2;n.x  n)
                {}\mRightarrow{}  (\mexists{}y:\mBbbN{}  {}\mrightarrow{}  X.  (subsequence(a,b.a  \mequiv{}  b;n.x  n;n.y  n)  \mwedge{}  mcauchy(d1;n.y  n)))))
    {}\mRightarrow{}  mcomplete(X  with  d1)
    {}\mRightarrow{}  mcomplete(X  with  d2))



Date html generated: 2020_05_20-AM-11_59_24
Last ObjectModification: 2019_12_14-PM-04_49_25

Theory : reals


Home Index