Nuprl Lemma : minus-poly-req

p:iPolynomial(). ipolynomial-term(minus-poly(p)) ≡ "-"ipolynomial-term(p)


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 minus-poly: minus-poly(p) ipolynomial-term: ipolynomial-term(p) iPolynomial: iPolynomial() itermMinus: "-"num all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] iPolynomial: iPolynomial() member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T req_int_terms: t1 ≡ t2 uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a less_than: a < b decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtype_rel: A ⊆B so_apply: x[s] nat: ge: i ≥  guard: {T} cons: [a b] less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) ipolynomial-term: ipolynomial-term(p) minus-poly: minus-poly(p) ifthenelse: if then else fi  btrue: tt real_term_value: real_term_value(f;t) itermConstant: "const" int_term_ind: int_term_ind itermMinus: "-"num true: True iff: ⇐⇒ Q rev_implies:  Q subtract: m bool: 𝔹 unit: Unit bfalse: ff bnot: ¬bb assert: b iMonomial: iMonomial() int_nzero: -o rev_uimplies: rev_uimplies(P;Q) minus-monomial: minus-monomial(m) itermAdd: left (+) right

Latex:
\mforall{}p:iPolynomial().  ipolynomial-term(minus-poly(p))  \mequiv{}  "-"ipolynomial-term(p)



Date html generated: 2020_05_20-AM-10_54_22
Last ObjectModification: 2020_01_02-PM-02_12_00

Theory : reals


Home Index