Nuprl Lemma : mtb-cantor-map-continuous

[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[mtb:m-TB(X;d)]. ∀[k:ℕ+]. ∀[p,q:mtb-cantor(mtb)].
  mdist(d;mtb-cantor-map(d;cmplt;mtb;p);mtb-cantor-map(d;cmplt;mtb;q)) ≤ (r1/r(k)) 
  supposing ∀i:ℕ((i ≤ (18 k))  ((p i) (q i) ∈ ℤ))


Proof




Definitions occuring in Statement :  mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p) mtb-cantor: mtb-cantor(mtb) m-TB: m-TB(X;d) mcomplete: mcomplete(M) mk-metric-space: with d mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q apply: a multiply: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p) all: x:A. B[x] guard: {T} implies:  Q metric: metric(X) so_lambda: λ2x.t[x] so_apply: x[s] prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q nat: nat_plus: + mtb-cantor: mtb-cantor(mtb) subtype_rel: A ⊆B int_seg: {i..j-} m-TB: m-TB(X;d) pi1: fst(t) squash: T decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False mtb-seq: mtb-seq(mtb;s) spreadn: spread3 lelt: i ≤ j < k less_than: a < b less_than': less_than'(a;b) sq_type: SQType(T) true: True mcauchy: mcauchy(d;n.x[n]) sq_exists: x:A [B[x]] rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  sq_stable: SqStable(P) mconverges-to: lim n→∞.x[n] y int_nzero: -o nequal: a ≠ b ∈  uiff: uiff(P;Q) rge: x ≥ y rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[cmplt:mcomplete(X  with  d)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[k:\mBbbN{}\msupplus{}].
\mforall{}[p,q:mtb-cantor(mtb)].
    mdist(d;mtb-cantor-map(d;cmplt;mtb;p);mtb-cantor-map(d;cmplt;mtb;q))  \mleq{}  (r1/r(k)) 
    supposing  \mforall{}i:\mBbbN{}.  ((i  \mleq{}  (18  *  k))  {}\mRightarrow{}  ((p  i)  =  (q  i)))



Date html generated: 2020_05_20-PM-00_00_34
Last ObjectModification: 2019_12_28-PM-11_48_47

Theory : reals


Home Index