Nuprl Lemma : mtb-cantor-map-continuous
∀[X:Type]. ∀[d:metric(X)]. ∀[cmplt:mcomplete(X with d)]. ∀[mtb:m-TB(X;d)]. ∀[k:ℕ+]. ∀[p,q:mtb-cantor(mtb)].
mdist(d;mtb-cantor-map(d;cmplt;mtb;p);mtb-cantor-map(d;cmplt;mtb;q)) ≤ (r1/r(k))
supposing ∀i:ℕ. ((i ≤ (18 * k))
⇒ ((p i) = (q i) ∈ ℤ))
Proof
Definitions occuring in Statement :
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p)
,
mtb-cantor: mtb-cantor(mtb)
,
m-TB: m-TB(X;d)
,
mcomplete: mcomplete(M)
,
mk-metric-space: X with d
,
mdist: mdist(d;x;y)
,
metric: metric(X)
,
rdiv: (x/y)
,
rleq: x ≤ y
,
int-to-real: r(n)
,
nat_plus: ℕ+
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
multiply: n * m
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p)
,
all: ∀x:A. B[x]
,
guard: {T}
,
implies: P
⇒ Q
,
metric: metric(X)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
le: A ≤ B
,
and: P ∧ Q
,
nat: ℕ
,
nat_plus: ℕ+
,
mtb-cantor: mtb-cantor(mtb)
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
m-TB: m-TB(X;d)
,
pi1: fst(t)
,
squash: ↓T
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
mtb-seq: mtb-seq(mtb;s)
,
spreadn: spread3,
lelt: i ≤ j < k
,
less_than: a < b
,
less_than': less_than'(a;b)
,
sq_type: SQType(T)
,
true: True
,
mcauchy: mcauchy(d;n.x[n])
,
sq_exists: ∃x:A [B[x]]
,
rneq: x ≠ y
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
ge: i ≥ j
,
sq_stable: SqStable(P)
,
mconverges-to: lim n→∞.x[n] = y
,
int_nzero: ℤ-o
,
nequal: a ≠ b ∈ T
,
uiff: uiff(P;Q)
,
rge: x ≥ y
,
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[X:Type]. \mforall{}[d:metric(X)]. \mforall{}[cmplt:mcomplete(X with d)]. \mforall{}[mtb:m-TB(X;d)]. \mforall{}[k:\mBbbN{}\msupplus{}].
\mforall{}[p,q:mtb-cantor(mtb)].
mdist(d;mtb-cantor-map(d;cmplt;mtb;p);mtb-cantor-map(d;cmplt;mtb;q)) \mleq{} (r1/r(k))
supposing \mforall{}i:\mBbbN{}. ((i \mleq{} (18 * k)) {}\mRightarrow{} ((p i) = (q i)))
Date html generated:
2020_05_20-PM-00_00_34
Last ObjectModification:
2019_12_28-PM-11_48_47
Theory : reals
Home
Index