Nuprl Lemma : mul-mono-poly-req

[m:iMonomial()]. ∀[p:iMonomial() List].
  ipolynomial-term(mul-mono-poly(m;p)) ≡ imonomial-term(m) (*) ipolynomial-term(p)


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 mul-mono-poly: mul-mono-poly(m;p) ipolynomial-term: ipolynomial-term(p) imonomial-term: imonomial-term(m) iMonomial: iMonomial() itermMultiply: left (*) right list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: req_int_terms: t1 ≡ t2 guard: {T} or: P ∨ Q mul-mono-poly: mul-mono-poly(m;p) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] cons: [a b] le: A ≤ B less_than': less_than'(a;b) iMonomial: iMonomial() int_nzero: -o colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B has-value: (a)↓ itermMultiply: left (*) right int_term_ind: int_term_ind itermConstant: "const" real_term_value: real_term_value(f;t) btrue: tt ifthenelse: if then else fi  ipolynomial-term: ipolynomial-term(p) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) itermAdd: left (+) right true: True iff: ⇐⇒ Q rev_implies:  Q

Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term(mul-mono-poly(m;p))  \mequiv{}  imonomial-term(m)  (*)  ipolynomial-term(p)



Date html generated: 2020_05_20-AM-10_54_39
Last ObjectModification: 2019_12_14-PM-00_53_43

Theory : reals


Home Index