Nuprl Lemma : mul-monomials-req

[m1,m2:iMonomial()].  imonomial-term(mul-monomials(m1;m2)) ≡ imonomial-term(m1) (*) imonomial-term(m2)


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 mul-monomials: mul-monomials(m1;m2) imonomial-term: imonomial-term(m) iMonomial: iMonomial() itermMultiply: left (*) right uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iMonomial: iMonomial() mul-monomials: mul-monomials(m1;m2) has-value: (a)↓ uimplies: supposing a int_nzero: -o req_int_terms: t1 ≡ t2 all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q real_term_value: real_term_value(f;t) itermMultiply: left (*) right int_term_ind: int_term_ind uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] guard: {T} or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) merge-int: merge-int(as;bs) imonomial-term: imonomial-term(m) itermConstant: "const" so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] insert-int: insert-int(x;l) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] itermVar: vvar bool: 𝔹 unit: Unit btrue: tt true: True bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q

Latex:
\mforall{}[m1,m2:iMonomial()].
    imonomial-term(mul-monomials(m1;m2))  \mequiv{}  imonomial-term(m1)  (*)  imonomial-term(m2)



Date html generated: 2020_05_20-AM-10_54_32
Last ObjectModification: 2020_01_02-PM-02_10_21

Theory : reals


Home Index