Nuprl Lemma : near-fixpoint-on-0-1

f:[r0, r1] ⟶ℝ
  ((∀x:ℝ((x ∈ [r0, r1])  (f[x] ∈ [r0, r1])))
   f[x] continuous for x ∈ [r0, r1]
   (∀e:ℝ((r0 < e)  (∃x:ℝ((x ∈ [r0, r1]) ∧ (|f[x] x| < e))))))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] rfun: I ⟶ℝ and: P ∧ Q cand: c∧ B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: or: P ∨ Q so_lambda: λ2x.t[x] label: ...$L... t uiff: uiff(P;Q) rccint: [l, u] i-member: r ∈ I exists: x:A. B[x] req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) r-ap: f(x) guard: {T} sq_stable: SqStable(P) squash: T rge: x ≥ y subtype_rel: A ⊆B true: True

Latex:
\mforall{}f:[r0,  r1]  {}\mrightarrow{}\mBbbR{}
    ((\mforall{}x:\mBbbR{}.  ((x  \mmember{}  [r0,  r1])  {}\mRightarrow{}  (f[x]  \mmember{}  [r0,  r1])))
    {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  [r0,  r1]
    {}\mRightarrow{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  ((x  \mmember{}  [r0,  r1])  \mwedge{}  (|f[x]  -  x|  <  e))))))



Date html generated: 2020_05_20-PM-00_28_38
Last ObjectModification: 2020_01_03-PM-03_50_03

Theory : reals


Home Index