Nuprl Definition : nonzero-on

f[x]≠r0 for x ∈ ==
  ∀m:{m:ℕ+icompact(i-approx(I;m))} (∃c:{ℝ((r0 < c) ∧ (∀x:ℝ((x ∈ i-approx(I;m))  (c ≤ |f[x]|))))})



Definitions occuring in Statement :  icompact: icompact(I) i-approx: i-approx(I;n) i-member: r ∈ I rleq: x ≤ y rless: x < y rabs: |x| int-to-real: r(n) real: nat_plus: + all: x:A. B[x] sq_exists: x:{A| B[x]} implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions occuring in definition :  set: {x:A| B[x]}  nat_plus: + icompact: icompact(I) sq_exists: x:{A| B[x]} and: P ∧ Q rless: x < y int-to-real: r(n) natural_number: $n all: x:A. B[x] real: implies:  Q i-member: r ∈ I i-approx: i-approx(I;n) rleq: x ≤ y rabs: |x|
FDL editor aliases :  nonzero-on

Latex:
f[x]\mneq{}r0  for  x  \mmember{}  I  ==
    \mforall{}m:\{m:\mBbbN{}\msupplus{}|  icompact(i-approx(I;m))\} 
        (\mexists{}c:\{\mBbbR{}|  ((r0  <  c)  \mwedge{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  i-approx(I;m))  {}\mRightarrow{}  (c  \mleq{}  |f[x]|))))\})



Date html generated: 2016_05_18-AM-09_18_43
Last ObjectModification: 2015_09_23-AM-09_10_42

Theory : reals


Home Index