Nuprl Lemma : old-proof-of-real-continuity
∀a,b:ℝ.  ∀f:[a, b] ⟶ℝ. real-cont(f;a;b) supposing real-fun(f;a;b) supposing a ≤ b
Proof
Definitions occuring in Statement : 
real-cont: real-cont(f;a;b), 
real-fun: real-fun(f;a;b), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
rleq: x ≤ y, 
real: ℝ, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
real-fun: real-fun(f;a;b), 
implies: P ⇒ Q, 
rfun: I ⟶ℝ, 
prop: ℙ, 
real-cont: real-cont(f;a;b), 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_apply: x[s1;s2], 
i-member: r ∈ I, 
rccint: [l, u], 
real: ℝ, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
real-sfun: real-sfun(f;a;b), 
sq_stable: SqStable(P), 
cand: A c∧ B, 
squash: ↓T, 
rneq: x ≠ y, 
guard: {T}, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
ge: i ≥ j , 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
int_nzero: ℤ-o, 
true: True, 
nequal: a ≠ b ∈ T , 
less_than: a < b, 
less_than': less_than'(a;b), 
rdiv: (x/y), 
rev_uimplies: rev_uimplies(P;Q), 
rational-approx: (x within 1/n), 
rge: x ≥ y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  real-cont(f;a;b)  supposing  real-fun(f;a;b)  supposing  a  \mleq{}  b
Date html generated:
2020_05_20-PM-00_09_51
Last ObjectModification:
2019_12_14-PM-03_09_41
Theory : reals
Home
Index