Nuprl Lemma : partial-geometric-series

n:ℕ. ∀c:ℝ.  (c ≠ r1  {c^i 0≤i≤n} (r1 c^n 1/r1 c)))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rdiv: (x/y) rneq: x ≠ y rnexp: x^k1 rsub: y req: y int-to-real: r(n) real: nat: all: x:A. B[x] implies:  Q add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: uimplies: supposing a uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) pointwise-req: x[k] y[k] for k ∈ [n,m] nat_plus: + subtract: m sq_type: SQType(T) guard: {T} less_than': less_than'(a;b) lt_int: i <j eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff btrue: tt subtype_rel: A ⊆B rdiv: (x/y)

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}c:\mBbbR{}.    (c  \mneq{}  r1  {}\mRightarrow{}  (\mSigma{}\{c\^{}i  |  0\mleq{}i\mleq{}n\}  =  (r1  -  c\^{}n  +  1/r1  -  c)))



Date html generated: 2020_05_20-AM-11_21_38
Last ObjectModification: 2020_01_02-PM-02_11_05

Theory : reals


Home Index