Nuprl Lemma : partial-geometric-series
∀n:ℕ. ∀c:ℝ. (c ≠ r1
⇒ (Σ{c^i | 0≤i≤n} = (r1 - c^n + 1/r1 - c)))
Proof
Definitions occuring in Statement :
rsum: Σ{x[k] | n≤k≤m}
,
rdiv: (x/y)
,
rneq: x ≠ y
,
rnexp: x^k1
,
rsub: x - y
,
req: x = y
,
int-to-real: r(n)
,
real: ℝ
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
rneq: x ≠ y
,
or: P ∨ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
req_int_terms: t1 ≡ t2
,
false: False
,
not: ¬A
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
so_apply: x[s]
,
rev_uimplies: rev_uimplies(P;Q)
,
pointwise-req: x[k] = y[k] for k ∈ [n,m]
,
nat_plus: ℕ+
,
subtract: n - m
,
sq_type: SQType(T)
,
guard: {T}
,
less_than': less_than'(a;b)
,
lt_int: i <z j
,
eq_int: (i =z j)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
subtype_rel: A ⊆r B
,
rdiv: (x/y)
Latex:
\mforall{}n:\mBbbN{}. \mforall{}c:\mBbbR{}. (c \mneq{} r1 {}\mRightarrow{} (\mSigma{}\{c\^{}i | 0\mleq{}i\mleq{}n\} = (r1 - c\^{}n + 1/r1 - c)))
Date html generated:
2020_05_20-AM-11_21_38
Last ObjectModification:
2020_01_02-PM-02_11_05
Theory : reals
Home
Index