Nuprl Lemma : partial-int-not-discrete
¬discrete-type(partial(ℤ))
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T), 
partial: partial(T), 
not: ¬A, 
int: ℤ
Definitions unfolded in proof : 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
not: ¬A, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
uiff: uiff(P;Q), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
nat: ℕ, 
nat_plus: ℕ+, 
real: ℝ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
discrete-type: discrete-type(T), 
rev_uimplies: rev_uimplies(P;Q), 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
int-to-real: r(n), 
le: A ≤ B, 
less_than': less_than'(a;b), 
rabs: |x|, 
subtract: n - m, 
true: True, 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T, 
sq_stable: SqStable(P), 
compose: f o g, 
has-value: (a)↓, 
lt_int: i <z j, 
absval: |i|, 
eq_int: (i =z j), 
nequal: a ≠ b ∈ T 
Latex:
\mneg{}discrete-type(partial(\mBbbZ{}))
 Date html generated: 
2020_05_20-PM-00_05_50
 Last ObjectModification: 
2020_03_20-PM-01_32_05
Theory : reals
Home
Index