Nuprl Lemma : prod-metric-space-complete

k:ℕ. ∀X:ℕk ⟶ MetricSpace.  ((∀i:ℕk. mcomplete(X i))  mcomplete(prod-metric-space(k;X)))


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) prod-metric-space: prod-metric-space(k;X) metric-space: MetricSpace int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] metric-space: MetricSpace pi1: fst(t) nat: so_apply: x[s] pi2: snd(t) prod-metric-space: prod-metric-space(k;X) mcomplete: mcomplete(M) subtype_rel: A ⊆B guard: {T} metric: metric(X) prop: mcauchy: mcauchy(d;n.x[n]) sq_exists: x:A [B[x]] mdist: mdist(d;x;y) prod-metric: prod-metric(k;d) nat_plus: + uimplies: supposing a rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 mconverges: x[n]↓ as n→∞ mconverges-to: lim n→∞.x[n] y sq_type: SQType(T) top: Top less_than': less_than'(a;b) subtract: m true: True sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) l_exists: (∃x∈L. P[x]) assert: b bnot: ¬bb bfalse: ff int_upper: {i...} nequal: a ≠ b ∈  ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 rtermMultiply: left "*" right rtermVar: rtermVar(var) rtermConstant: "const" rat_term_ind: rat_term_ind rtermDivide: num "/" denom rat_term_to_real: rat_term_to_real(f;t)

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}X:\mBbbN{}k  {}\mrightarrow{}  MetricSpace.    ((\mforall{}i:\mBbbN{}k.  mcomplete(X  i))  {}\mRightarrow{}  mcomplete(prod-metric-space(k;X)))



Date html generated: 2020_05_20-AM-11_58_01
Last ObjectModification: 2020_01_06-PM-00_17_34

Theory : reals


Home Index