Nuprl Definition : proper-continuous

f[x] (proper)continuous for x ∈ ==
  ∀m:{m:ℕ+icompact(i-approx(I;m)) ∧ iproper(i-approx(I;m))} . ∀n:ℕ+.
    (∃d:{ℝ((r0 < d)
            ∧ (∀x,y:ℝ.  ((x ∈ i-approx(I;m))  (y ∈ i-approx(I;m))  (|x y| ≤ d)  (|f[x] f[y]| ≤ (r1/r(n))))))})



Definitions occuring in Statement :  icompact: icompact(I) i-approx: i-approx(I;n) i-member: r ∈ I iproper: iproper(I) rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] sq_exists: x:{A| B[x]} implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions occuring in definition :  int-to-real: r(n) natural_number: $n rdiv: (x/y) rsub: y rabs: |x| rleq: x ≤ y implies:  Q i-approx: i-approx(I;n) i-member: r ∈ I real: all: x:A. B[x] rless: x < y and: P ∧ Q sq_exists: x:{A| B[x]} nat_plus: + iproper: iproper(I) icompact: icompact(I) set: {x:A| B[x]} 
FDL editor aliases :  proper-continuous

Latex:
f[x]  (proper)continuous  for  x  \mmember{}  I  ==
    \mforall{}m:\{m:\mBbbN{}\msupplus{}|  icompact(i-approx(I;m))  \mwedge{}  iproper(i-approx(I;m))\}  .  \mforall{}n:\mBbbN{}\msupplus{}.
        (\mexists{}d:\{\mBbbR{}|  ((r0  <  d)
                        \mwedge{}  (\mforall{}x,y:\mBbbR{}.
                                  ((x  \mmember{}  i-approx(I;m))
                                  {}\mRightarrow{}  (y  \mmember{}  i-approx(I;m))
                                  {}\mRightarrow{}  (|x  -  y|  \mleq{}  d)
                                  {}\mRightarrow{}  (|f[x]  -  f[y]|  \mleq{}  (r1/r(n))))))\})



Date html generated: 2016_10_26-AM-09_43_07
Last ObjectModification: 2016_09_05-AM-10_01_43

Theory : reals


Home Index