Nuprl Lemma : pseudo-positive-iff

x:ℝ((r0 ≤ x)  (pseudo-positive(x) ⇐⇒ ∀y:ℝ((¬(x y)) ∨ (y r0)))))


Proof




Definitions occuring in Statement :  pseudo-positive: pseudo-positive(x) rleq: x ≤ y req: y int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q or: P ∨ Q not: ¬A false: False pseudo-positive: pseudo-positive(x) guard: {T} uimplies: supposing a uiff: uiff(P;Q) cand: c∧ B rless: x < y sq_exists: x:A [B[x]] nat_plus: + less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top

Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  {}\mRightarrow{}  (pseudo-positive(x)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}y:\mBbbR{}.  ((\mneg{}(x  =  y))  \mvee{}  (\mneg{}(y  =  r0)))))



Date html generated: 2020_05_20-AM-11_09_14
Last ObjectModification: 2020_01_09-PM-04_35_54

Theory : reals


Home Index