Nuprl Lemma : pseudo-positive-iff
∀x:ℝ. ((r0 ≤ x)
⇒ (pseudo-positive(x)
⇐⇒ ∀y:ℝ. ((¬(x = y)) ∨ (¬(y = r0)))))
Proof
Definitions occuring in Statement :
pseudo-positive: pseudo-positive(x)
,
rleq: x ≤ y
,
req: x = y
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
implies: P
⇒ Q
,
or: P ∨ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
not: ¬A
,
false: False
,
pseudo-positive: pseudo-positive(x)
,
guard: {T}
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
cand: A c∧ B
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
Latex:
\mforall{}x:\mBbbR{}. ((r0 \mleq{} x) {}\mRightarrow{} (pseudo-positive(x) \mLeftarrow{}{}\mRightarrow{} \mforall{}y:\mBbbR{}. ((\mneg{}(x = y)) \mvee{} (\mneg{}(y = r0)))))
Date html generated:
2020_05_20-AM-11_09_14
Last ObjectModification:
2020_01_09-PM-04_35_54
Theory : reals
Home
Index