Nuprl Lemma : punctured-homeomorphism

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)].
  (mcomplete(X with d)
   mcomplete(Y with d')
   (∀h:homeomorphic(X;d;Y;d'). ∀p:Y.  (h ∈ homeomorphic({x:X| (snd(h)) p} ;d;{y:Y| p} ;d'))))


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) homeomorphic: homeomorphic(X;dX;Y;dY) mk-metric-space: with d msep: y metric: metric(X) uall: [x:A]. B[x] pi2: snd(t) all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  apply: a universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] homeomorphic: homeomorphic(X;dX;Y;dY) exists: x:A. B[x] sq_exists: x:A [B[x]] pi2: snd(t) mfun: FUN(X ⟶ Y) and: P ∧ Q ext-eq: A ≡ B subtype_rel: A ⊆B msfun: msfun(X;d;Y;d') squash: T sq_stable: SqStable(P) is-msfun: is-msfun(X;d;Y;d';f) prop: uimplies: supposing a cand: c∧ B so_apply: x[s] guard: {T} iff: ⇐⇒ Q rev_implies:  Q is-mfun: f:FUN(X;Y)

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].
    (mcomplete(X  with  d)
    {}\mRightarrow{}  mcomplete(Y  with  d')
    {}\mRightarrow{}  (\mforall{}h:homeomorphic(X;d;Y;d').  \mforall{}p:Y.    (h  \mmember{}  homeomorphic(\{x:X|  x  \#  (snd(h))  p\}  ;d;\{y:Y|  y  \#  p\}  ;d')\000C)))



Date html generated: 2020_05_20-AM-11_59_01
Last ObjectModification: 2019_11_11-PM-04_42_48

Theory : reals


Home Index