Nuprl Lemma : punctured-homeomorphism
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)].
  (mcomplete(X with d)
  ⇒ mcomplete(Y with d')
  ⇒ (∀h:homeomorphic(X;d;Y;d'). ∀p:Y.  (h ∈ homeomorphic({x:X| x # (snd(h)) p} d;{y:Y| y # p} d'))))
Proof
Definitions occuring in Statement : 
mcomplete: mcomplete(M), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
mk-metric-space: X with d, 
msep: x # y, 
metric: metric(X), 
uall: ∀[x:A]. B[x], 
pi2: snd(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
homeomorphic: homeomorphic(X;dX;Y;dY), 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
pi2: snd(t), 
mfun: FUN(X ⟶ Y), 
and: P ∧ Q, 
ext-eq: A ≡ B, 
subtype_rel: A ⊆r B, 
msfun: msfun(X;d;Y;d'), 
squash: ↓T, 
sq_stable: SqStable(P), 
is-msfun: is-msfun(X;d;Y;d';f), 
prop: ℙ, 
uimplies: b supposing a, 
cand: A c∧ B, 
so_apply: x[s], 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
is-mfun: f:FUN(X;Y)
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].
    (mcomplete(X  with  d)
    {}\mRightarrow{}  mcomplete(Y  with  d')
    {}\mRightarrow{}  (\mforall{}h:homeomorphic(X;d;Y;d').  \mforall{}p:Y.    (h  \mmember{}  homeomorphic(\{x:X|  x  \#  (snd(h))  p\}  ;d;\{y:Y|  y  \#  p\}  ;d')\000C)))
 Date html generated: 
2020_05_20-AM-11_59_01
 Last ObjectModification: 
2019_11_11-PM-04_42_48
Theory : reals
Home
Index